<u>Delhi Public School, Gandhinagar</u> <u>Academic Session 2020 – 21</u> <u>Holiday Home – Work</u>

Chapter 1 : Real Numbers Exercise 1.1

- 1. Prove that the square of any positive integer is of the form 5q, 5q + 1, 5q + 4 for some integer q.
- 2. If n is an odd integer, then show that $n^2 1$ is divisible by 8.

Exercise 1.2

- 1. Use Euclid's division algorithm to find the HCF of 441, 567 and 693.
- 2. Can two numbers have 18 as their HCF and 380 as their LCM? Give reasons.
- 3. If the HCF of 408 and 1032 is expressible in the form $1032m 408 \times 5$, find *m*.
- 4. Find the greatest number which divides 285 and 1249 leaving remainders 9 and 7 respectively.
- 5. A mason has to fit a bathroom with square marble tiles of the largest possible size. The size of the bathroom is 10 ft. by 8 ft. What would be the size in inches of the tile required that has to be cut and how many such tiles are required?

Exercise 1.3

- 1. Prove that $\sqrt{3} + \sqrt{5}$ is irrational.
- 2. Prove that $\sqrt{7}$ irrational.

Exercise 1.4

- 1. A rational number in its decimal expansion is 327.7081. What can you say about the prime factors of q, when this number is expressed in the form $\frac{p}{q}$? Give reasons.
- 2. Write the denominator of rational number $\frac{257}{5000}$ in the form $2^m \times 5^n$, where m, n are non-negative integers. Hence, write its decimal expansion, without actual division.

Chapter 2 : Polynomials

Exercise 2.1

1. Find number of zeroes for the following:

Exercise 2.2

Find the zeroes of each of the following quadratic polynomials and verify the 1. relationship between the zeroes and their coefficients:

(i)
$$q(x) = \sqrt{3}x^2 + 10x + 7\sqrt{3}$$

(ii)
$$p(x) = x^2 + 2\sqrt{2}x - 6$$

If α and β are the zeros of the quadratic polynomial $f(x) = \alpha x^2 + bx + c$, then evaluate:

(i)
$$\alpha - \beta$$
 (ii) $\frac{1}{\alpha} - \frac{1}{\beta}$ (iii) $\frac{1}{\alpha} + \frac{1}{\beta} - 2\alpha\beta$

If one zero of the quadratic polynomial $f(x) = 4x^2 - 8kx - 9$ is negative of the other, 3. find the value of k.

If α and β are the zeros of the quadratic polynomial $f(x) = x^2 - 1$, find a quadratic 4. polynomial whose zeroes are $\frac{2\alpha}{\beta}$ and $\frac{2\beta}{\alpha}$.

- **Exercise 2.3** Obtain all zeroes of the polynomial $f(x) = 2x^4 + x^3 14x^2 19x 6$, if two of its 1. zeroes are -2 and -1.
- Obtain all zeroes of $f(x) = x^3 + 13x^2 + 32x + 20$, if one of its zeros is -2. 2.
- What must be added to the polynomial $p(x) = x^4 + 2x^3 2x^2 + x 1$ so that the 3. resulting polynomial is exactly divisible by $x^2 + 2x - 3$.
- If $x \sqrt{5}$ is a factor of the cubic polynomial $x^3 3\sqrt{5}x^2 + 13x 3\sqrt{5}$, then find all the 4. zeroes of the polynomial.

Exercise 2.4

- Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a 1. time, and product of its zeros as 4, -1 and -5 respectively.
- Find k, so that $x^2 + 2x + k$ is a factor of $2x^4 + x^3 14x^2 + 5x + 6$. Also, find all the zeroes 2. of the two polynomials.

2.